NAVAL POSTGRADUATE SCHOOL
Monterey, Calitornla

THESIS

NPSNET VEHICLE DATABASE:
AN OBJECT-ORIENTED DATABASE
IN A REAL-TIME VEHICLE SIMULATION

by
Susan C. Borden Davis

June, 1996

Thesis Advisor: Michael J. Zyda
Co-Advisor: David R. Pratt

Approved for public release; distribution is unlimited.

DTIC QUALITY INSPECTED 3

19961024 036

fForm Approved
OMB No. 0704-0188

REPORT DOCUMENTATION PAGE i

Public reporting burden for this collection of information 1s estimated to average 1 hour per response, including the tme for reviewing instructions, searching existing data sources,
gathering and maintaining the data needed, and completing and reviewing the collection of information. Send comments regarding this burden estimate or any other aspect of this
collection of informaton, including suggestions for reducing this burden. 10 Washington Headquarters Services. Directorate for information Operations and Reports, 1215 Jetferson
Davis Highway, Suste 1204, Arlington, VA 22202-4302. and 10 the Ottice of Management and Budget. Paperwork Reduction Project (0704-0188), Washington. OC 20503.

2 FE08T 2456 3. REPORT AP QNDDATES COVERED

5. FUNDING NUMBERS

1. AGENCY USE ONLY (Leave blank)

4. TITLE AND SUBTITLE

NPSNET Vehicle Database: An Object-Oriented
Database in a Real-Time Vehicle Simulation

6. AUTHOR(S) .
Susan C. Borden Davis

8. PERFORMING ORGANIZATION

7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES)
REPORYT NUMBER

10. SPONSORING / MONITORING

9. SPONSORING /MONITORING AGENCY NAME(S) AND ADDRESS(ES)
AGENCY REPORT NUMBER

11. SUPPLEMENTARY NOTES
The views expressed in this thesis are those of

the author and do not reflect the official policy or position of the
Department of Defense or the U.S. Government.

123. DISTRIBUTION /AVAILABILITY STATEMENT 12b. DISTRIBUTION CODE

Approved for public release; distribution is
unlimited.

13. ABSTRACT (Maximum 200 words)

The Naval Postgraduate School has actively explored the design
and implementation of NPSNET, a real-time three-dimensional simulator
on low-cost, readily accessible workstations. NPSNET involves a
tremendous amount of interaction between vehicle, terrain, obstacle
and ordnance objects in a dynamic simulation system. There exists a
need for an organized, efficient storage structure that allows real-
time retrieval of objects and their interactive relationships.

This work concentrates on selection and design of a vehicle
database model to maximize storage and real-time retrieval of data
for the NPSNET visual simulator. The results of this effort can be
applied to the overall system, NPSNET, in a distributed database
management system.

15. NUMBER OF PAGES
80

14, SUBJECT TERMS

database model, NPSNET, object-oriented 16, PRICE CODE

19. SECURITY CLASSIFICATION]20. LIMITATION OF ABSTRACT

17. SECURITY CLASSIFICATION
OF REPORT

UNCLASSIFIED

18. SECURITY CLASSIFICATION
OF THIS PAGE

UNCLASSIFIED

OF ABSTRACT
UNCLASSIFIED

UL

NSN 7540-01-280-5500

Standard Form 298 (Rev 2-89)
Prescribed by ANS! Std 739-18

ii

Approved for public release; distribution is unlimited

NPSNET VEHICLE DATABASE:
" AN OBJECT-ORIENTED DATABASE
IN A REAL-TIME VEHICLE SIMULATION

Susan C. Borden Davis
Lieutenant Commander, United States Navy
B.S., United States Naval Academy, 1984

Submitted in partial fulfillment of the
requirements for the degree of

MASTER OF SCIENCE IN COMPUTER SCIENCE

from the
NAVAL POSTGRADUATE SCHOOL
June 1996

Author:
Susan C. Borden Davis

Approved by: "' Mk%&/

Michael J. Zydax:ghESfb Advisor

David R. Pratt, Co-Advisor

ed—

Ted Lewis, Chairman,
Department of Computer Science

iii

ABSTRACT

The Naval Postgraduate School has actively explored the
design and implementation of NPSNET, a real-time three-
dimensional simulator on low-cost, readily accessible
workstations. NPSNET involves a tremendous amount of
interaction between vehicle, terrain, obstacle and ordnance
objects in a dynamic simulation system. There exists a need
for an organized, efficient storage structure that allows
real-time retrieval of objects and their interactive
relationships.

This work concentrates on selection and design of a
vehicle database model to maximize storage and real-time
retrieval of data for the NPSNET visual simulator. The
results of this effort can be applied to the overall system,

NPSNET, in a distributed database management system.

vi

TABLE OF CONTENTS

I. INTRODUCTION. ... ittt ittt teennnenseenenensnns
A. BACKGROUND.ttt ieesnennnenennananeas

1. NPSNET.ifi ittt ieneennnneneeenns

2. NPSNET Vehicles.........iiiiiinin...

B. PURPOSE AND GOALS OF WORK.cv v

C. BREAKDOWN OF WORK.ttt ieninennnnas

ITI. NPSNET VEHICLE INTERACTION EXAMPLES..........
A. INTERACTION WITH TERRAIN........cicuivvuennn

B. INTERACTION WITH OBSTACLES AND VEHICLES.
1. Interaction with Obstacles............
2. Interaction with Vehicles............

C. INTERACTION WITH ORDNANCE................

ITI. DATABASE EVOLUTION.ttt eneennonneens
A. HISTORICAL PERSPECTIVE.....¢ititireeseann

B. TRADITIONAL DATA MODELS.ttt eeeans

1. Hierarchical Data Model..............

2. Network Data Model...................

3. Relational Data Model................

C. OBJECT DATA MODEL. ..ttt it iieneennnenennn

vii

IV. PROPOSED NPSNET VEHICLE DATABASE............ 27

A. NPSNET V: DATA MODEL OVERVIEW........... 27
B. NPSNET V: DATA MODEL DESIGN............. 28
1. Identify the Basis.............o..... 30
2. Define the Requirements.............. 31
3. Identify the Data Items.............. 33
4. Separate the Data Members from the
ClasSsSeS. i ittt it ittt et iiiaeienannnn 34
5. Build Data Member Dictionary......... 37
6. Gather Data Members into Classes..... 38
7. Identify the Key Members............. 44
8. Identify Class Relationships......... 46
9. Identify the Methods................. 47
10. Make the Class Persistent............ 48
C. NPSNET V: DATA MODEL IMPLEMENTATION..... 49
1. Define NPSNET V Database............. 50
2. Bring NPSNET V Together.............. 51
V. CONCLUSION. ...ttt ettt eneeenaseosseneanssenenas 53
A. RESULTS. . i ittt i ittt ttttsenseeaneanoenss 53
B. RECOMMENDATIONS.ttt ietteenennoeenenns 54
AP PENDIX . ittt e it c et e e et eseae e 57
CLOSSARY . it e ettt et et eatacsanseeseneesnessasannonns 61
REFERENCES. & vttt it et eeecsensesneoensansnnennnsasns 65
INITIAL DISTRIBUTION LIST..... ¢ttt eueeennaanneas 67

Figure
Figure
Figure
Figure
Figure
Figure
Figure

Figure
Figure
Figure
Figure
Figure
Figure

Figure
Figure
Figure
Figure

Figure

Figure

3.1

4.8
4.9
4.10
4.11

4.12

LIST OF FIGURES

A Hierarchical Database.................. 16
A Network Database....................... 17
A Relational Database.................... 19
A Many-to-Many Relationship.............. 20
A Class Hierarchy..........veiiiunnnn.. 23
A Land_Vehicle Class Hierarchy........... 24
Ten Basic Object Database Design Steps... 29

Object Database Design Step 1:
Identify the Basis...........oiiiiinn.. 31

Object Database Design Step 2:
Define the Requirements.................. 32

Object Database Design Step 3:
Identify the Data Items.................. 34

Refined List of NPSNET V Data Items...... 35

Object Database Design Step 4:
Separate the Data Members from the

ClasSseS . i ittt ittt e e e e e 36
Object Database Design Step 6:

Gather Data Members into Classes......... 39
The MK 46 Class.......coiiiiiiinennnnnnn. 41
The SH 60B Class.......c.oviiiiinnennnnnnn 42
The DDG_ 51 Class.......coiiiiiiinnnnenn.. 43
The Assignment Class.............co.vu.... 44

Object Database Design Step 9: :
Identify the Methods..................... 47

Expanded list of NPSNET V Class Methods.. 48

ACKNOWLEDGEMENT

Many thanks to Drs. Zyda and Pratt for their most
excellent NPSNET adventure, and especially to my family
for their tenacious support, and to my mother, whose
spirit guided me through to completion.

I. INTRODUCTION

This work covers the selection and design of a database
model to store and retrieve data for NPSNET, a real-time
vehicle and battle simulator. NPSNET is a multiple year
effort started in early 1990 as a newer version of the
older, more expensive SIMNET project. It explores the
SIMNET domain using readily available IRIS graphics
workstations rather than platform specific nodes, and
provides a real-time interface with the user for virtual
world exploration and experimentation [Osbo91]. Maximizing
storage and real-time data retrieval for the simulator can

lead to development of a viable distributed database system.

A. BACKGROUND

1. NPSNET

NPSNET is a real-time vehicle and battle simulator

capable of displaying vehicle movement over the ground, in
the air or through water. While NPSNET supports a full
complement of land, air and sea vehicles, it also provides
the mediums through which these vehicles move. It models
terrain features such as soil type, water masses, vegetation
and elevation, and can effect environmental conditions
including coastal fog or urban haze. NPSNET incorporates
the cultural features of roads, buildings, signs and other
fixed objects to fully immerse the user into its simulated

world.

The NPSNET user selects a vehicle from a field of
realistic craft, fanciful flying cows, turkeys or tomato
tanks, and controls its movement via a six degree of freedom
spaceball or button/dialbox associated with a command and
control screen. Up to 500 vehicles may interact in the
virtual world at a given time, including autonomously
scripted Vehicles or vehicles controlled by other users
networked to the system. As NPSNET constructs a three-
dimensional virtual world in which to move and interact, it
pursues training, planning, gaming and other purposes where
the introduction of a physical player may be too hazardous,
too expensive or too frivolous to tolerate [Zyd92].

2. NPSNET Vehicles

NPSNET engages to totally immerse the user in its
real-time vehicle combat simulation. The graphics
representing the virtual world respond to the actions and
movements of the user and convince the user that they truly
are within the environment that the simulator represents
[Zyda93]. With this long-term goal in mind, NPSNET supports
a full complement of land, air and sea vehicles capable of
simulated movement over ground, in air or through water. It
models the mediums through which these vehicles move with
terrain features, and incorporates the fixed objects around
which these vehicles move with cultural features, or
obstacles. NPSNET represents vehicle armament with ordnance

features, adding accurate aural cues to provide feedback

about the user’s vehicle, environment and actions taking
place.

The NPSNET user chooses a vehicle by making a mouse
selection on a command and control screen. Each vehicle is
actually a low resolution indicator of a player on the
terrain. Its three-dimensional icon displays a minimum
level of graphical detail with which the NPSNET user is
willing to live [Zyd92].

An NPSNET vehicle operates in an environment of
gridsquares, with up to 500 vehicles interacting in the
virtual world at a given time. Interactions may involve
vehicles controlled by prewritten script, vehicles driven
interactively from other workstations in the network and
autonomous vehicles introduced into the system via a
programmable network "harness" process [Zyda92]. A two-
dimensional map on the command and control screen displays
the position and tracking of all players attached within a
gridsquare, as well as the direction and scope of the user’s
vehicle and the position and movement of the other vehicles.

The user accesses additional data through a window
at the top of the viewing screen. For instance, the window
may display the speed, direction and attitude of the engaged
vehicle, its remaining ordnance and current fuel level. The
user should ultimately be able to access all data pertinent
to any vehicle or related object within the virtual world,

expanding the tutorial capacity of the simulation.

Players control their chosen vehicle using a variety
of interface devices, including a keyboard, a button/dialbox
and a six degree of freedom spaceball. The latter is an
extremely versatile device for control of three-dimensional
movement, facilitating quick user action.

Real-time NPSNET representation relies on rapid
event detection and reaction, including reacting to user
input, following terrain contours, and responding to changes
in the three-dimensional world [Osbo91]. Real-time combat
simulation also relies on rapid detection of, and response
to, interaction between land, air and sea forces. Chapter
II of this work covers NPSNET vehicle interactions, along

with a discussion of collision detection and response.

B. PURPOSE AND GOALS OF WORK

Current NPSNET data storage and retrieval mechanisms are
slow, cumbersome to maintain and complex to enhance. As
NPSNET proceeds in the direction of object-oriented modeling
and real-time scene management over a multiple workstation
network, its data management system must also progress.
NPSNET requires an updated database facility to support the
demands involved in real-time vehicle combat simulation.
Dynamic terrain and ballistic motion issues, intelligent
autonomous agents, a three-dimensional sound system, and
other future projects will require speed and accuracy in
documenting world state events, with built-in concurrency
control to manage user interface across a distributed network.

4

This work identifies, develops and explores the design
of a data model to enhance the existing NPSNET data
management system. It compares traditional database
technology and proposes a viable alternative to meet the
increasing data management needs of the NPSNET simulator,
building upon this selection to design a model of the
proposed database. This work also uncovers areas for future

research and development.

C. BREAKDOWN OF WORK

Chapter II covers various types of NPSNET vehicle
interaction. These include examples of terrain traversal,
collision with fixed and moving objects, and changes
rendered by ordnance impact.

Chapter III provides a detailed description of
traditional and available data models, their primary areas
of application, and a discussion of their utility in the
NPSNET environment. Italicized terms are in the Glossary.

Chapter IV presents a description of the proposed
database mechanism for use with NPSNET, with a discussion of
its selection and design. It references sample data
lattices, found in the Appendix. This chapter also
discusses implementation issues affecting the proposed data
model within NPSNET.

Chapter V concludes this work. It reviews the proposed
NPSNET Vehicle Database and recommends areas for future

consideration.

ITI. NPSNET VEHICLE INTERACTION EXAMPLES

The NPSNET visual combat simulator models land, air and
sea vehicle operation. The virtual world in which the
vehicles operate includes terrain features, cultural
features representing fixed objects, or obstacles, and
weaponry, or ordnance, features. All simulated objects
within NPSNET fall under the umbrella of a vehicle, terrain,
obstacle or ordnance class, respectively.

NPSNET achieves virtual world battlefield exploration
and experimentation using interactions between objects of
the vehicle, terrain, obstacle and ordnance classes. A
discussion of these object classes, with examples of their

interaction in a real-time interface with the user, follows.

A. INTERACTION WITH TERRAIN

The first step in virtual world development is to obtain
data that represents the world the system will model. A
three-dimensional visual simulation commonly starts with a
large two-dimensional grid of elevation data and converts it
into a three-dimensional terrain carpet [Zyd92]. NPSNET
divides the terrain data of the original SIMNET database
into gridsquares designed to accurately represent actual
terrain features such as soil type, water masses, vegetation
and elevation. Additionally, it effects environmental

conditions including coastal fog or urban haze.

Vehicle interaction with the environment will further
evolve terrain representation into a more dynamic facsimile.
The concept of dynamic terrain recognizes that simulated
objects can affect the environment and that these effects
must be recognizable throughout the simulation. If, for
example, a vehicle knocks down a tree, dynamic terrain will
represent the tree throughout the network as knocked down,
and from that point forward, users joining the system must
view the.virtual world with that tree knocked down, with the
change recorded so that the episode can resume even if a
hiatus occurs [Zyda93].

Ordnance can also interact with the terrain. An-
artillery round fired from a vehicle and creating a crater
upon hitting the ground is another:example in which
simulated interaction imposes lasting effects upon the
environment.

The database must save dynamic terrain modifications and
relay them across the NPSNET system so that all users view
the same state of the world model. The credibility of the
system, otherwise known as immersion, is contingent upon

successful real-time storage and retrieval of this data.

B. INTERACTION WITH OBSTACLES AND VEHICLES

In the first NPSNET incarnation, vehicles could pass
through fixed and moving objects, decreasing the immersion
of the user in the virtual world. NPSNET now integrates
collision detection into its overall system, enhancing

8

realism and increasing system data needs as the computer
constantly searches the world model to determine if a
vehicle is sharing its space with another object. NPSNET
further maintains its usefulness with real-time collision
response that includes an assessment and report of damages
that colliding objects suffer. An accurate database and
efficient management system will facilitate processing of
simulated vehicle interaction.

1. Interaction with Obstacles

NPSNET incorporates the cultural features of roads,
buildings, signs and other fixed objects to more fully
immerse the user into its simulated world. It documents
instances of vehicle contact with such obstacles and records
system responses for network distribution so that all users
interact with the same state of the world model.

As a vehicle proceeds through NPSNET, an algorithm
updates its position and checks for an object collision.

The algorithm maintains real-time simulation by limiting the
scope of the collision detection to those obstacles attached
within the current gridsquare radius of vehicle movement
[Osbo91] .

An example of vehicle contact with a cultural
feature is the positioning of a ship alongside a pier.
Collision detection identifies the immediate proximity of
the vessel to the structure and collision response relays

the success of the simulated docking maneuver to the user.

A vehicle collision with a fixed obstacle such as a

watertower affects the simulated environment as in the

dynamic terrain example given previously. A parked vehicle

also affects the environment when it ceases vehicle movement

through a terrain gridsquare and becomes an obstacle

attached to the terrain by parking within that gridsquare.
2. Interaction with Vehicles

The potential exists for a user’s vehicle to collide
with any of the other NPSNET land, air or sea vehicles. A
collision check for moving objects first limits the scope of
the collision detection range to identify only probable
collision participants, then determines if a collision has
occurred before determining the actual point of collision
[Osbo91] . Next, NPSNET runs a response function to display
the extent of damage to the vehicles involved.

A common example of a vehicle collision is a crash
between two land vehicles, such as a jeep running into a
tank. Other vehicle interaction examples include a fighter
jet landing on an aircraft carrier or a cargo truck driving
onto a railcar platform. 1In these instances, NPSNET will
reflect both the individual characteristics that each
vehicle retains and the resulting damage or composite state |

of the vehicles involved.

C. INTERACTION WITH ORDNANCE
NPSNET vehicles also interact with their own weaponry
and the armament of other vehicles. NPSNET will note the

10

impact of ordnance upon a vehicle, such as missile contact
with a personnel carrier, detecting it similarly to a
collision between vehicles. Collision response alters the
world model state to reflect casualties back to networked
workstations.

NPSNET attempts to regulate and monitor the use or
release of vehicle ordnance, updating statistical
characteristics accordingly. Weapons realistically deploy
ammunition. A submarine, for example, cannot launch a
missile that it does not have, nor can a machine gun
continue to fire after its rounds are spent. Ordnance
behavior incorporates independent propulsion and ballistic
motion issues.

Dynamic terrain comes into play with ordnance

interaction. As terrain state changes, NPSNET will capture

and record any alterations, noting obstacle modifications if

an interaction with ordnance changes cultural features to

impose a lasting effect upon the environment. A crater left

by an artillery round highlights a good example of an

altered terrain state.

NPSNET stresses truthfulness in its simulation of object

interaction. To teach a user incorrectly in a vehicle combat

simulator puts that individual in danger and could perhaps

lead to a lethal situation when the user encounters reality,

losing the usefulness of the simulation [Zyda93]. Accurate

vehicle interaction relies heavily on an effective data

11

model with efficient storage and retrieval mechanisms. A
discussion of certain traditional and available data models,
their evolution, and their relevance in the NPSNET

environment appears in the next chapter.

12

IITI. DATABASE EVOLUTION

Databases have evolved over the past two decades from
rudimentary, ad hoc systems into central components of
organizational information systems [Higa92]. 1In the
relatively short time since commercial data management
products first appeared, this area of computer research and
development has become a primary field of fundamental and
conceptual importance [Date81]. This chapter introduces
database management and documents its progression through
the three best known data paradigms, the hierarchical,
network and relational data models. It concludes with a
discussion of emerging trends in data modeling and data
processing that are propelling the field of data management
toward an object-oriented front, presenting a detailed
description of the new and powerful object data model.

Italicized terms found in this chapter are in the Glossary.

A. HISTORICAL PERSPECTIVE

A database management system entails a database and a
set of programs that allow users to access and modify system
data files [Date8l]. A data model specifies a given
database, and then refers to it in terms of the abstract and
concrete features of the types, aggregates and relationships
of data within that database. A data language provides
access to the database as it specifies data processing,

integrity and security requirements [Hsia9l]. Together, a

13

data model, data language and database management system
characterize the concept of database management.

In order to better understand our current needs and
future direction in data management, we should first
understand the history of database management, which traces
the history of data processing itself [Stev92]. With the
conception of information processing machines, programmers
have faced the challenge to manage data and to store and
organize it into formats allowing for rapid and flexible

processing. While these basic information systems

requirements remain, system architectures continue to change

significantly as more powerful development tools produce
increasingly complex applications [Andl92].

Early computing systems were proprietary, with database

management ad hoc, customized for specific applications. As

computer usage increased, there was a parallel rise in user
demand for support of a wider variety of applications, and
the mid 1960s saw the first generation of database
management systems [Andl92]. The introduction of standard,
general-purpose systems freed developers from creating new
database management software for each new application, but
the use of such systems mandated the definition of certain

data models that system designers would use [Stev92].

B. TRADITIONAL DATA MODELS
Data management for the mainframes of the 1960s
conserved memory space and processing load, organizing data

14

along clearly defined access paths, evolving into the
hierarchical and network data models [Andl192]. The
minicomputers of the late 1970s and the early 1980s brought
the need for interactive, flexible data management, and the
relational data model promised to meet these new
requirements. What follows is a brief description of each
of these three traditional data models.

1. Hierarchical Data Model

The hierarchical data model was one of the first
formal data management approaches, supporting hierarchical
organizations that exist in the real world by representing
data in an inverted tree structure. A hierarchical data
model accesses data from the top to the bottom of its
structure in a series of nodes, similar to branches in a
tree, with embedded physical pointers in the data records to
support interfile relationships.

The hierarchical format defines the concepts of a
parent record, a child record, a record type, and parent-
child relationships, observing properties as follows
[Elma89]: (1) the hierarchy root does not participate as a
child record type in any parent-child relationship; (2)
every record type except the root does participate as a
child record type, with only one distinct parent for each
child; (3) any parent record type can participate as parent
in any number (zero or more) of parent-child relationships;

(4) a record type that does not participate as a parent

15

record type in any parent-child relationship is a leaf; and
(5) if a record type participates as parent in more than ohe
parent-child relationship, then its child record types are
ordered, with the order displayed, by convention, from left
to right in a hierarchical diagram.
Figure 3.1 illustrates the hierarchical

relationships of an organizational database that has files
of companies, divisions within each company, and departments

within each division [Stev92]:

COMPANY
DIVISION DIVISION
ONE TWO
DIV-1 DIV-1 DIV-2 Div-2
ACCT'G MAINT ACCT'G MAINT
DEPT DEPT DEPT DEPT

Figure 3.1 A Hierarchical Database

Some disadvantages result from the rigidity of the
hierarchical structure. Modification of tﬁe database
structure is a very complex task because a previously
undefined, new access path may be complicated or even

impossible to achieve [Andl92]. Additionally, the

16

hierarchical data model has no ability to represent records
with multiple parent relationships, unlike the network data
model.

2. Network Data Model

The network data model evolved from the need to

easily depict non-hierarchical relationships. If the
organization of Figure 3.1 were to allow one department to
support multiple divisions, the network data model would be
able to directly portray the ensuing parent-child

relationships. Figure 3.2 [Stev92] shows a network

representation of a department record with multiple parents:

COMPANY
DIVISION DIVISION
ONE TWO
DIV-1 DIV-2
MAINT ACCOUNT'G MAINT
DEPT DEPT DEPT

Figure 3.2 A Network Database

While a network continues to organize data in an
inverted tree, it is a more general structure than a

hierarchy. A given record occurrence in a network may have

17

any number of immediate superiors, modeling a many-to-many
correspondence more directly than the hierarchical approach
[Date81l]. Predefined pointers link records, increasing
flexibility over the hierarchical data model.

The disadvantage of the network data model is its
reduction in high-access performance. The complexity of the
network structure makes queries more complex and
modification more complicated. While the network data model
of data management is ideal for information systems
departments to use for large-scale batch processing, it does
not meet the need for interactive or ad hoc data management,
as does the relational data model [Andl92].

3. Relational Data Model

The relational data model is the best known of the
three traditional record-based data models [Hsia92]. The
entire data file format of the relational database is
visible to the user. Data in the relational data model is
stored in tables consisting of columns and rows, with the
rows representing data records and the columns representing
the fields in a record. The database uses a primary key
data element to uniquely identify each record.

Figure 3.3 [Stev92] shows a typical relational
database in which the primary key of one record is a
secondary key for another record. This allows an
application to retrieve records of one type based on the

specified primary key of another type.

18

PR

In this case, the division identification number is
the primary key of the division record. Because each
department record contains the identification of the
division to which it belongs, the division identification

number is the secondary key of the department record.

Since many depart-

ments can belong to one " DIVISION

division, the application DIV # DIVISION NAME

can use this secondary key T,

to retrieve a list of
DEPARTMENT

which departments belong
DEPT # | DEPARTMENT NAME | DIV #

to a particular division.

The arrow icon, with its

single and double arrow- - Figure 3.3 A Relational
Database

heads, represents a one-

to-many relationship linking the two records.

To support a many-to-many relationship, the
relational data model uses a connector file to link record
definitions. A concatenation of primary keys from the
linked records forms thé primary key to the connector file,
while either data element by itself forms a secondary key
[Stev92] . The connector file may also contain data items
that are unique to the connection itself. -

In Figure 3.4, the division and department

identification numbers together form the primary key of the

connector file. Individually, each is a secondary key of

19

DIVISION DEPARTMENT

DIV # DIVISION NAME DEPT # DEPARTMENT NAME

3

DIV #| DEPT# LIAISON STATUS RPT

CONNECTOR

Figure 3.4 A Many-to-Many Relationship’

the connector file, as well as the primary key of their
respective file.

The relational data model uses actual data values in
its records, rather than hidden pointers, to represent file
relationships and locate data elements. This associative
access is less vulnerable than navigating by pointer, for it
eliminates the risk of broken pointer chains, increases data
integrity, and facilitates recovery from system error.

A general-purpose relational database management
system is relatively easy to design and develop, and can
represent any interfile relationship found in other record-
based data systems. The relational approach examines
database file relationships to reorganize aata elements in
an effort to eliminate redundancy, internal file pointers,
and repeating groups of data elements in the records. These

points combine with its inherent strength to make the

20

relational data model the standard method for representing
data in a database [Stev92].

The relational data model achieves its superior
flexibility and maintainability at the cost of a higher
level of processing to establish connections and access
data. Its systems requirements for processor and memory are
higher to achieve the same level of overall performance
found in tree structures [Andl92].

The demand for more powerful and flexible
distributed relational database management systems, when
coupled with the desire to support variable-length data
items, repeating groups, and abstract data types, leads us
beyond the traditional data models to investigate a fourth
kind of data model. This new paradigm, the object data
model, is a merging of object-oriented programming and

traditional database technology [Booc91];

C. OBJECT DATA MODEL

Design of advanced programming languages and
environments provided the primary introduction of the
object-oriented paradigm, which directly represents real-
world objects by database objects [Bert91l]. The pervasive
growth of object-oriented programming technology makes it
the chosen technique for software development in the 1990s.

Object-oriented programming derives its strength from
four fundamental characteristics [Stev92]: abstraction,
encapsulation, inheritance and polymorphism. Abstraction is

21

the ability to design new abstract data types for object
representation. Encapsulation binds the behavior of an
object to its data values in one logical unit. Inheritance
allows new data types to derive, or inherit, behavior from
o0ld ones, and polymorphism customizes the behavior of a
derived data type.

The merits of using an object-oriented approach to
database management stem from its perceived power over
traditional approaches and its inclusion of the robust
constructs, functions and features that allow programmers to
capture the organic elements of their application [Hsia91].
While conventional data models "scatter" information about
an object over several records or files [Elma89], object-
oriented programming promises a more natural relationship
between information and its processing. Because object-
oriented design can represent data in ways that traditional
data models cannot, it needs a database model of its own.
The object data model is the first attempt to marry a
programming model with a database model [Stev92].

The object approach to data management efficiently
provides a single, object-oriented language to define both
the data and the user interface [Andl92]. The object data
model describes the structure of its system objects,
including their identity, their relationships to other
objects, their attributes, and their operations [Rumb91l].

Each object-oriented program is a cooperative collection of

22

these system objects, and each object represents an instance
of some class. Object-oriented classes are members of a
class hierarchy, whose inheritance relationships unite them
[Booc91] . Classés define the attribute values that each
object instance carries, and the operations which each
object performs or undergoes [Rumb91l].

Graphical representations of the object model, like the
one in Figure 3.5, diagram object classes, arranging them
into hierarchies that share common structure and behavior
with which other classes can associate [Rumb91l]. 1In a
multilevel class hierarchy, the root of each class is an

object and the instances of each class are the classes at

Supcrclass

I

Class_1 Class_2

Subclass_1 Subclass_2 Subclass_3 Subclass_4

Figure 3.5 A Class Hierarchy

23

the next lower level. The lowest level of the generic class
hierarchy leads to the objects that are instances of the
lowest-level class that comprises the objects [AndlS2].

Each lower level, or subclass, is derived from a base class,
or superclass.

Figure 3.6 replaces generic class and object names to
describe a "Land Vehicle" object data model, where object
classes such as "M1" and "M113" are at the lowest level of
the "Tracked" class, which in turn is a subclass of the
"Land Vehicle" superclass. Each object instance of the
tracked land vehicle "M1" is the lowest-level object in this

hierarchy.

Land_Vchicle

Tracked Wheeled

M1 Ml1iZ Jeep Pcrs_Carricr

I

M1_a M1_b

Figure 3.6 A Land Vehicle Class Hierarchy

24

—-

A comparison of available database technology to the
needs of a virtual world system like NPSNET highlights some
traditional data model shortfalls. Hierarchical and network
databases are weak choices for NPSNET data management, as
they rely on hidden pointers, are often complex and
sometimes impossible to modify, and do not meet the need for
interactive data management. Relational data models
overcome these problems but their rules prohibit many of the
data representations that an object paradigm can support.

A real-time vehicle combat simulator like NPSNET
requires a data management system that can accommodate the
vast array of graphic object imagery, movement and sound
that combine to fully immerse the user in its world. The
object data model is a viable option to represent NPSNET.
The following chapter expands on the selection and design of
the proposed NPSNET vehicle database, and discusses some

implementation issues affecting the proposal.

25

-

26

IV. PROPOSED NPSNET VEHICLE DATABASE

NPSNET simulates a full complement of land, air and sea
vehicles, their ordnance, their movement, and the mediums
through which they move. An NPSNET storage and retrieval
facility should support the varied demands involved in real-
time vehicle combat simulation, including intelligent
autonomous agents, a three dimensional sound system, dynamic
terrain and ballistic motion issues, multiple workstations
and built-in concurrency control. The progression of NPSNET
toward object-oriented modeling and real-time scene
management over a distributed network highlights its need
for an updated data management system. NPSNET V, a proposed
NPSNET Vehicle Database, emulates the persistent features of
a relational database while capitalizing on the object-
oriented characteristics of abstraction, encapsulation,
inheritance and polymorphism. This chapter discusses the
selection and design of the NPSNET V object data model and

then explores its implementation.

A. NPSNET V: DATA MODEL OVERVIEW

Comparison of the strengths and weaknesses of available
data models indicates that NPSNET V, a proposed NPSNET
Vehicle Database, would benefit from a combinational design
approach. Going beyond traditional data models, NPSNET V
experiments with object-oriented database design to meet the

increasing data management requirements of NPSNET. It

27

adapts the relational data model to its NPSNET objects to
combine the strengths of a relational model with the
inherent capabilities of object-oriented design, defining
related persistent classes and their behavior within the
NPSNET vehicle combat simulator. |

As an object data model, NPSNET V can represent variable
length data members, using abstraction to accommodate NPSNET
simulations such as imagery, multimedia, geographic data and
weather. Encapsulation allows NPSNET V to bind data
representation and behavior to more naturally represent the
NPSNET modeled world. Through inheritance, NPSNET V builds
a hierarchy of derived classes, and it uses polymorphism to
further customize the behavior of its derived data types.

Drawing strength from the relational model, NPSNET V
achieves persistence by defining a base class that
participates in its own persistence, from which it can
derive its other classes. NPSNET V relates object locations
and relationships by associating key data values with each
object instance, and it maintains the integrity of those
relationships to keep the database in a stable condition
with respect to the real-time scene management needs of

NPSNET over its distributed network [Stev92].

B. NPSNET V: DATA MODEL DESIGN

Object database technology is still so new that no
formal design methodology exists. While the basic concepts
of objects, classes and inheritance seem widely understood,

28

common use of inheritance and composition to achieve a
useful and robust class hierarchy is not yet well-defined
[dePa91] . 1Instead, various guidelines for object data
modeling present themselves to designers who favor an
object-oriented approach over established, but less

versatile, data models.

NPSNET V Design

Step 1. Identify the basis.

Step 2. Define the database’s functional and performance requirements.
Step 3. Identify the data items.

Step 4. Separate the data members from the persistent classes.

Step 5. Build a data member dictionary.

Step 6. Gather data members into persistent classes.

Step 7. Identify the key data members of each class.

Step 8. Identify the relationships between classes.

Step 9. Identify the class methods.

Step 10. Add the inheritance and member functions to make the classes
persistent.

Figure 4.1 Ten Basic Object Database Design Steps

NPSNET _V traces its development through guidelines of
ten basic object database design steps, shown in Figure 4.1
[Stev92]. An unlisted but important final step is

refinement, particularly since overall NPSNET development is

29

ongoing. Highlights of these design steps, with respect to
NPSNET V, follow.
l. Identify the Basis

The basis for NPSNET V rests in the mission and
purpose of the NPSNET vehicle database. It reviews
resources available for NPSNET V development and proposes
possible approaches to problem solution.

The mission of NPSNET V is to update the existing
NPSNET storage and retrieval facility. Its purpose is to
support a real-time vehicle combat simulation that
encompasses dynamic terrain and ballistic motion issues,
intelligent autonomous agents, and three-dimensional
representation, with expansion capability for future
projects.

Resources available for NPSNET V development include
the present NPSNET database system and the parameter goals
under which the simulator operates, as well as the objects
that NPSNET models, primarily vehicles, their ordnance, and
the terrain and obstacles which affect their movement.
NPSNET progression toward object-oriented modeling and real-
time scene management‘over a multiple workstation network
makes object-oriented data management a likely approach to
NPSNET vehicle data model design.

The NPSNET V basis is an evolving description,
changing as system updates occur. It is a necessary first

step in data model design, laying the foundation for the

30

NPSNET _V requirements analysis. Figure 4.2 summarizes the

NPSNET V basis.

NPSNET _V Basis
Mission Resources
Update NPSNET storage and - NPSNET database system
retrieval facility. - Parameter goals of simulator
operation
Purpose - Objects that NPSNET models:
Support real-time vehicle combat -- vehicles
simulation: -- ordnance
- Dynamic terrain -- terrain
- Ballistic motion -- obstacles
- Intelligent autonomous agents
- Three-dimensional representation Possible solution
Expansion capability. Object-oriented data management

Figure 4.2 Object Database Design Step 1:
Identify the Basis

2. Define the Requirements

A requirements definition should state system needs,
indicating what is to be done without specifying how it is
to be done [Rumb91]. This step of the NPSNET V database
design process reviews both functional requirements and
performance requirements.

NPSNET V functional requirements detail the kind of
data the vehicle database contains as well as the expected
output of the system. They identify pieces of information
that the database must comprise. NPSNET V performance
requirements include criteria about how the system will run,

backup, recover and restart, as well as details about system

31

maintenance and database administration [Stev92]. Figure

4.3 summarizes these requirements.

NPSNET V Requirements
Vehicles Operations Terrain
- air - speed - vegetation
- land - range - barren cover
- sea - ammunition - urban details
Ordnance - cargo - environment
- ballistic - assignment -- fog
- controlled Vehicle Interactions -- rain
- static - collisions -- SNOW
Characteristics - explosions Obstacles
- names - movement - single point
- numbers - operations - linear
- costs - areal
- dates Dynamic Terrain

Figure 4.3 Object Database Design Step 2:
Define the Requirements

NPSNET catalogues multiple air, land and sea
vehicles, as well as ballistic, controlled and static
ordnance. Its database must document their individual
characteristics, such as names, numbers, costs and dates, as
well as operational features like speed and range
capabilities, and ammunition and cargo assignment.

The system tracks vehicle interactions, including
collisions, explosions, movement and other operations.
NPSNET also catalogues terrain and environmental conditions
through which the vehicles and ordnance move, and obstacles

that impact their movement. These include vegetation,

32

barren cover, urban details, fog, rain, snow, and single
point, linear and areal fixed objects.

Ideally, the level of system detail will incorporate
real-time scene management concerns, particularly those of
concurrency control, point of reference, current object
status, dynamic terrain features and vehicle state-of-
readiness at a given point in the combat simulation. The
functional and performance requirements will help identify
data items that NPSNET V must support.

3. Identify the Data Items

A simple and effective way to identify NPSNET V data
items is to extract probable data references, particularly
nouns, from the NPSNET V basis and requirements of the first
two design steps. Each significant noun, or data item, may
result in NPSNET_V class or data member representation in
the next part of the object database design process.

Other data associated with these references will
expand the list and assist in identifying additional data
items. Verbs associated with the list are important for
later use in identifying class methods. Organize the
NPSNET _V data items in a fashion that allows for sorting and
reordering. This will facilitate additional refinement, as
the database design progresses.

Figure 4.4 presents an initial list of nouns from
the basis and requirements steps. These data items may

result in NPSNET_V class or data member representation.

33

NPSNET _V Data Items

Basis nouns:
dynamic terrain vehicles
ballistic motion ordnance
three-dimensional terrain
representation obstacles

Requirements nouns:

air vehicles operations terrain

land vehicles speed vegetation

sea vehicles range barren cover
ballistic ordnance ammunition urban details
controlled ordnance cargo environment
static ordnance assignment fog
characteristics vehicle interactions rain

names collisions Snow

numbers explosions single point obstacles
costs movement linear obstacles
dates dynamic terrain areal obstacles

Figure 4.4 Object Database Design Step 3:
Identify the Data Items

4. Separate the Data Members from the Classes

Data aggregates representing NPSNET V persistent
classes will come from the list of data items identified in
the step above. Data members within these classes will
derive from the other data items on the same list. The
refined data item list of Figure 4.5 helps to highlight
which items are data members and which are not. It is a
reasonable place from which to start in the subjective

separation of data members from persistent classes.

34

NPSNET _V Data Items

35

ballistic motion obstacles terrain (-continued)
movement areal urban
3-D representation city asphalt
characteristics crater city
ammunition linear railway
cargo barrier roadway
costs dock waterway
unit transport vegetation
crew point brush
capacity antenna crop
complement building forest
dates buoy water
commission operations flowing
decommission assignment river
names consumption waterway
crew member rate standing
hull source lake
model movement ocean
numbers platform pond
buno range puddle
hull speed swamp
serial storage 3-D representation
social security capacity graphic
collisions location sound
vehicle with obstacle transfer vehicles
vehicle with ordnance destination air
vehicle with terrain source aircraft
vehicle with vehicle ordnance fixed wing
dynamic terrain ballistic rotary
collisions gun hydrofoil
explosions howitzer land
terrain mortar amphibian
explosions controlled railed
ordnance on obstacle missile tracked
ordnance on ordnance torpedo wheeled
ordnance on terrain static sea
ordnance on vehicle mine submarine
movement terrain surface
acceleration barren amphibian
attitude dirt hydrofoil
distance mud ship
direction rock vehicle interactions
elevation sand collisions
gridpoint environment explosions
gridsquare fog movement
velocity haze operations
rain
snow
Figure 4.5 Refined List of NPSNET V Data Items

Stevens cautions that the clear separation in
traditional database design between aggregates and data
elements does not exist in an object-oriented design. Here,
some of the apparent data elements will in turn become
abstract data types, or classes [Stev92]. This step must
incorporate author judgment and discernment to differentiate
between the two. One method of discernment is to separate
the line entries of the data item list, rearranging and
regrouping them to aid in data member recognition. Some
items will stand out as singular data members, while others

seem to naturally suggest aggregates of data members.

NPSNET _V Data Members

Crew capacity hull number gridpoint

crew complement serial number gridsquare

unit cost social security velocity
commission date number consumption rate
decommission date acceleration range

crew member name attitude speed

hull name distance storage capacity
model name direction storage location
buno number elevation

Additionally, each individual instance of:

collisions obstacles terrain
explosions ordnance 3-D representation
vehicles

Figure 4.6 Object Database Design Step 4:
Separate the Data Members from the Classes

Figure 4.6 is an initial list of NPSNET V data
members, taken from the data item nouns of the previous

36

step. Separation of these data members from the persistent
classes is necessary in preparation for the next two
NPSNET V design steps.

5. Build Data Member Dictionary

This design step ushers in the first construction
phase of the NPSNET V database solution. It builds a data
member dictionary from the data members in NPSNET V that
will be members of persistent classes. The ability to
organize, sort and rearrange this data remains important.
Itemize each data member separately to aid in later
identification of their redundancies and interclass
relationships.

Building a data member dictionary requires
comprehensive knowledge about its data members, including,
at a minimum, the data type of each data member. For some
items in Figure 4.6, data type determination is easy. Some
of these data members will be instances of abstract data
types, possibly taken from class libraries. For example,

costs may be instances of a currency class, dates will be

instancés of a date class, and names will be instances of a
string class [Stev92].

Dates and social security numbers are data members
with known ranges and formats. Not all numbers are simple
integer types, however. Some may be abstract integer types,
with defined ranges, while others, like serial numbers, may

contain letters or punctuation, as well as digits. The data

37

members that represent certain values may be quantities or
amounts that must have defined limits, and those that refer
to location may require a set of enumerated values.

Data typing is often application dependent. The
format of a collision, explosion, obstacle, ordnance,
terrain, three-dimensional, or vehicle data item, for
example, is not obvious from the data member list alone.
Because NPSNET is an existing system, its available source
code and documentation can contribute to the construction of
the data member dictionary. Stevens suggests using source
code, in lieu of inadequate documentation, to first examine
how existing software uses data members, and then to
"reverse-engineer" their characteristics [Stev92].

Once each data member has a clearly defined format
and behavior, construction can begin of classes that will
implement these members. A clear and comprehensive
definition of the physical properties of all data members
within the database is an imminently important stage of
NPSNET V design, and should be a matter for future
consideration. An in depth definition of these data members
goes beyond the scope of this endeavor. The following steps
use sample definitions for a representative selection of
data members.

6. Gather Data Members into Classes
After separating the data members from the NPSNET_V

data item list, aggregates remain. Most of these aggregates

38

NPSNET V Classes
ballistic motion operations roadway
characteristics assignment waterway
ammunition ‘consumption vegetation
cargo consumption source brush
costs platform crop
crew storage forest
dates transfer water
names transfer destination flowing
numbers transfer source river
dynamic terrain ordnance standing
collisions ballistic lake
vehicle with obstacle gun ocean
vehicle with ordnance howitzer pond
vehicle with terrain mortar puddle
vehicle with vehicle controlled swamp
explosions missile 3-D representation
ordnance on obstacle torpedo 3-D graphic
ordnance on ordnance static 3-D sound
ordnance on terrain mine vehicles
ordnance on vehicle terrain air
movement barren aircraft
obstacles dirt fixed wing
areal mud rotary
city rock hydrofoil
crater sand land
linear environment amphibian
barrier fog railed
dock haze tracked
transport rain wheeled
point Snow sea
antenna urban submarine
building asphalt surface
buoy railway ship

vehicle interactions

Figure 4.7 Object Database Design Step 6:
Gather Data Members into Classes

will become the persistent classes of NPSNET V. Balance the
remaining aggregates, listed in Figure 4.7, against the

39

NPSNET requirements to ensure that those left represent
necessary persistent classes. This step is not absolute, as
refinement will play a large role in the final determination
of what are, and are not, persistent classes.

The intent of this step is to gather data members
into the remaining NPSNET V persistent classes by defining
the data representation of each class. Identify the data
members of each class. Gather together all data items
related to the class, and build a figurative stack of the
relevant data members. While this task sounds simple, it is
often confusing and may require a great deal of refinement.
Again, organize the information in a manner that allows for
sorting and rearranging.

Next, identify the data types of each data member
within the class, using the definitions of the data
dictionary from the previous step. Once these definitions
are in place and the necessary abstract data types exist,
the design of each persistent clagss falls into place.

The four primary NPSNET V object classes are the
ordnance, vehicle, obstacle and terrain classes. Each is a
superclass, representing an aggregate of several other,
derived classes. Identification of an object within such a
class requires representation of its class hierarchy, and
subsequent data representation of each subclass. Extensive
class hierarchies of the ordnance, vehicle, obstacle and

terrain superclasses appear in the Appendix.

40

Consider data representation of a Mk 46 torpedo.

The NPSNET_V Ordnance Class Hierarchy, found in the
Appendix, lists this ordnance object as a member of the

MK 46 class of torpedoes. Figure 4.8 shows an example of a
data representation of the MK 46 class design, utilizing
string, real number, character, simple integer, date and

currency data member definitions.

class MK_46 { //Mk 46 torpedo
String serialno; /Iserial identification number
String name; /"Mk 46 torpedo”
String model; //"Mk 46"
Real length; /185 ft
Real diameter; 1112.75 ft
Real weight; /1508 Ib
Real max_speed; /145 knots
Real max_range; /112,400 yd at optimum depth
Real acquisition_range; //more than 1,000 yd
char piston_engine; /Ipiston engine (solid propel), yes/no
char cam_engine; /lcam engine (liquid propel), yes/no
int PBXN_103; //98 1b PBXN-103 high explosive
Date date_prod; /Iservice entry date
Currency cost_unit; //unit cost
String contractor; /[Honeywell
String buno; /Mbuno number of deployment helo
String hullno; //ull number of deployment ship
|5

Figure 4.8 The MK 46 Class

Class design is an ongoing process. An existing
class design should neither restrict a following design nor
remain exempt from future review and revision. With this in
mind, consider data representation of an SH-60B Seahawk
helicopter. The SH_60B class is listed in the NPSNET_V
Vehicle Class Hierarchy, also found in the Appendix. It
derives from the "H-60 single rotary aircraft" path of the
hierarchy. Figure 4.9 shows a sample SH 60B class design.

41

class SH_60B {
String buno;
String name;
String model;
Real fuse_length;
Real over_length;
Real rotor_dim;
Real height;
Real max_gross_weight;
int T700_GE_401C;
int 1900_shaft_hp;
Real max_speed;
Real max_range;
Real max_fuel;
Real consumrate_fuel;
char LAMPS Mk_III
int Mk46_torp;
int Penguin;
int crew_comp;
int off_comp;
int enl_comp;
char rotor_brake;
char blade_fold;
char tail_fold;
Date date_comm;
Currency cost_unit;
String contractor;
String hulino;

I

//SH-60B Seahawk helicopter
/Mbuno identification number
//"Seahawk"

/["SH_60B"

1150 ft

/164.6 ft

//53.5 ft

/17 ft

/121,884 1b

/itwin T700-GE-401C Turboshaft engs
/11,900 shaft horsepower per engine

/7180 knots

//About 380 nm

//4,000 Tb

/11,000 Ib/hour

//ILAMPS Mk III Weapons System
/12-Mk 46 torpedoes

//1 Penguin missile

//crew complement of 3, takes up to 5

/lofficer complement of 2
//enlisted complement of 1
/frotor brake, on/off

//blade fold, yes/no

/hail fold, yes/no

//service entry date

//unit cost

//Sikorsky

//hull number of deployment ship
I

Figure 4.9 The SH 60B Class

An Arleigh Burke-class AEGIS destroyer also appears
in the Appendix, as a member of the DDG 51 class of surface
ships. An example of its class design is in Figure 4.10.

Note that instances of both the SH 60B and MK 46
classes may be assigned to the DDG_51 class, and that both
an SH_60B and a DDG_51 may have assigned instances of the
MK 46 class. The requirement to deploy ordnance on a
vehicle, or embark one vehicle on another, addresses design
decisions that surpass the flat file representations of

Figures 4.8, 4.9 and 4.10. A relational model would

42

class DDG_51{
String hullno;
String name;
String model;
Real over_length;
Real beam;
Real draft;
Real max_displacement;
int gas_turbine;
int 100k_shaft _hp;
Real max_speed;
Real max_range;
Real max_fuel;
Real consumrate_fuel;
char Flight TTA;
int SH_60B;
int 64_Mk41 VLS;
int 32_Mk41_VLS;
int Harpoon;
int SM_2;
int TLAM;
int TASM;
int 12_75;
int Mk46;
int Mk50;
int 5_54_MKk45;
int 20_Mk15;
char AEGIS;
int Mk99;
char SPY_1D;
char SPS_67V3;
char SPS_64;
char SQS_53C;
char Kingfisher;
int crew_comp;
int off_comp;
int enl_comp;
Date date_comm;
Currency cost;
String contractor;

b

//Arleigh Burke-class DDG

//Mull identification number

/1" Arleigh Burke"

//"DDG"

1/509.5 ft loa

11 66.7 ft

/1 30.5 ft (navigational)

/19,9195 tons (full load)

//4 gas turbines

//100,000 shaft hp, 2 shafts

/131 + knots

//4,400+ nm at 20 knots
//maximum fuel load

//fuel consumption rate

//FlightTIA design, yes/no

/ISH-60B Seahawk, embarked

/11 64-cell Mk 41 VLS

/11 32-cell Mk 41 VLS

/MMarpoon Anti-Ship Missile
//Navy’s Standard Missile SM-2
//Tomahawk Land-Attack Missile
//Tomahawk Anti-Ship Missile

/16 12.75-in torp tubes (2 trip mnts)
//Mk 46 torpedo

//Mk 50 torpedo

/11 5-in 54-cal Mk 45 dual purp gun
/12 20-mm Mk 15 Phalanx CIWS
//AEGIS Weapon System

/13 Mk 99 illuminators
/IAN/SPY-1D multi-function radar
/IAN/SPS-67(V)3 surface search radar
//AN/SPS-64 navigation radar
//AN/SQS-53C bow-mounted sonar
/lrev Kingfisher mine-detection system
/1383 crew complement, with helo det
/1 32 officers complement

/1351 enlisted complement
/lcommissioned 12 Dec 92

//unit cost

//Bath Iron Works

Figure 4.10 The DDG_51 Class

represent this relationship with a file that records the
ordnance-vehicle or vehicle-vehicle assignment, normalizing
the design to avoid inefficiency. The data representation
presented in Figure 4.11 is an example of an Assignment
class design.

43

class Assignment { //Assignment class
String idno; /fassigned object identification number
String platformno; //assignment platform identification number

&

Figure 4.11 The Assignment Class

This Assignment class serves to broadly reflect all
ordnance and vehicle assignments within NPSNET V. The
identification number represents Mk 46 serial numbers, as
well as SH-60B buno numbers. The platform number represents
both buno and hull numbers.

Some relationships between NPSNET V classes are more
complicated than others. Each data representation requires
the designer to iterate the design process, revisit the
requirements, and make appropriate modifications. Only a
few examples of NPSNET V class design appear in this work.
Full data representation of all NPSNET object classes is
left as a matter for future consideration. The ones listed
in this section serve to illustrate the potential of
NPSNET V through the remaining object database design steps.

7. Identify the Key Members

Each NPSNET V class must have a primary key data
member to identify objects of the class. Each class may
also have one or more secondary keys, which identify
alternate ways to locate an object within the database.

In the class design examples of the previous step,
the serial number is the primary key for the MK 46 class,

and it uniquely identifies each instance of a MK 46 object.

44

Similarly, the buno number is the primary key for the SH 60B
class and the hull number is the primary key for the DDG_51
class. Each object has a unique identification number.

The hull number is a secondary key for both the
MK 46 class and the SH 60B class. It identifies a ship
deployment platform for each torpedo or helicopter. The
MK 46 class also contains a buno number to identify a
helicopter deployment platform, in lieu of a hull number.
Every MK_46 object has either a hull number or a buno
number, and multiple Mk 46 torpedoes can have the same hull
or buno number.

The Assignment class in NPSNET V is similar to a
connector file in a relational database. Its primary key is
the concatenation of the identification number and the
platform number. The combination of these two data members
uniquely identifies each instance of an Assignment object.

Every object in NPSNET_V has some feature that
uniquely identifies it. During class design, base the
primary key of each class on the identification feature that
sets each object apart from other members of its class. If
an NPSNET _V persistent class has no primary key, then
redesign that class.

Secondary keys provide alternate ways to locate
objects of a persistent class. They imply a relationship
between classes when the primary key of one class is the

secondary key of another. 1In the primary key of a connector

45

class, each concatenated key member is a secondary key of
the connector class, as well as the primary key of one of
the connected classes. The next design step touches on the
class relationships that secondary keys support.
8. Identify Class Relationships

To identify relationships between NPSNET V
persistent classes, identify those classes that share a
common data member. If that data member is the primary key
of one of the classes, then those classes are related.

Stevens cautions that an implied relationship must
have integrity, in order for it to work [Stev92]. This
means that if an object of a first class contains the
primary key of a second class, then there should be a
matching object of that second class. For instance, if a
particular MK_46 class torpedo is assigned to a DDG_51 class
ship as part of its armament, then there must exist a DDG 51
class object with a hull number that exactly matches the
hull number in the secondary key of that particular MK 46.

Relationships between classes are important because
they serve as potential paths for multiple-class retrievals.
For example, consider the relationships between the MK 46,
DDG 51, and SH 60B classes. A path that first retrieves a
DDG_51 object, then each SH_60B deployed on that ship, and
then each MK 46 assigned to each of those helicopters, will
return the Mk 46 torpedoes that are deployed on the SH-60B

helicopters assigned to that DDG.

46

If the design intent were to recover a list of
torpedoes deployed directly on a particular DDG, and not
those assigned to a helicopter, then the return would be
incorrect. Review class relationships carefully, and
develép retrieval paths meticulously, to ensure that data
returns accurately reflect the intent of the retrievals.

9. 1Identify the Methods

Identifying the NPSNET V class methods entails a
review of the design step that gathered these classes.
Return to the list of potential persistent classes, and seek
out verbs that may define application-dependent behavior of
the persistent classes. Figure 4.12 is a brief list of
verbs drawn directly from the nouns in the NPSNET V Classes

list of Figure 4.7.

NPSNET _V Class Methods

collide operate store flow
explode assign transfer Snow
move consume rain interact

Figure 4.12 Object Database Design Step 9:
Identify the Methods

Expand on this list, organizing thé information to
allow for sorting and rearranging. Identify data member
behaviors, and define these behaviors as object-oriented
methods. Figure 4.13 features an expanded list of potential

class methods, grouped to focus on similar behaviors.

47

NPSNET V Class Methods

operate interact move reverse blow
assign collide accelerate roll flow
close explode ascend sink haze
consume aim decelerate start mist

open fire descend stop rain

store load float turn sleet
transfer track pitch yaw snow

Figure 4.13 Expanded list of NPSNET V Class Methods

This portion of the design is similar to the design
of any object-oriented program. Identify the NPSNET V
methods, then add them to the appropriate NPSNET V
persistent classes. Stevens confirms that each of these
methods will bind to its persistent object because the
program that retrieves the‘object uses the same class
definition and class library used by the program that
created the object [Stev92]. The remaining object database
design step makes each NPSNET V class persistent.

10. Make the Class Persistent

According to Stevens, the last step of object data
model design, aside from revision, is integration of the
persistent object class design into the persistent object
database management system [Stev92]. Do ﬁhis by adding
attributes to the NPSNET_V key data members and persistent
classes, enabling them to participate in their own

persistence.

48

The type of object database management system that
NPSNET employs will influence the nature of these
attributes. Generally, Stevens suggests that these
attributes will consist of inheritance, custom base class
functions, and special member functions added to the
persistent class that the base will call [Stev92].

Once its design is complete, the NPSNET V data model
will require a database management system to put it into
effect. Selection of the system software, and
implementation of such a system, are both projects for
future research and development. The following section

discusses issues affecting NPSNET V implementation.

C. NPSNET V: DATA MODEL IMPLEMENTATION

Implementing the NPSNET V object data model will require
the selection of a software system to process the database.
PARODY is an example of a database management system that
can define NPSNET V, and bring it together with the NPSNET
system. According to Stevens, PARODY is a non-proprietary
"Persistent, Almost Relational Object Database" system that
can be implemented as a C++ class library [Stev92].

PARODY is aptly named, for its data model is itself a
type of parody, strongly resembling the traditional
relational data model, while assuming certain properties of
C++ objects. It can provide the persistent capabilities
that NPSNET V needs, but that object-oriented programming
languages alone do not support.

49

1. Define NPSNET V Database

A project for future consideration would be to
define NPSNET V as a PARODY database. Traditional database
file definition involves building a data model with a data
definition language to describe file content. PARODY could
enable NPSNET V to use C++ class definition. PARODY would
encapsulate into the C++ class definition a description of
the data members in each class, plus the integration of the
class with the PARODY database manager.

NPSNET V definition would first involve class
designation to represent NPSNET V persistent objects,
already begun in the design steps of the previous section.
It would next identify key data members for these classes.
Abstract base classes already defined in the PARODY class
library could facilitate NPSNET V derivation of persistent
object classes and key member classes.

Although an object-oriented programming language
such as C++ cannot sustain object persistence on its own,
PARODY could solve this problem for NPSNET V. It would
provide specific member functions to allow objects of
persistent class types to participate in their own

persistence.

Additional definition issues to consider would
include relating NPSNET V classes, limiting multiple-copy
objects, and embedding persistent objects within other ones,

to streamline application efficiency.

50

2. Bring NPSNET V Together

A next step in NPSNET V implementation could be to
write the program that brings the NPSNET V design together
with the existing NPSNET system. This program would first
build a database, based on the NPSNET V object data model
design. It would then declare and use NPSNET V persistent
objects to achieve NPSNET real-time vehicle combat
simulation. This pfogram would also have to be able to

destroy NPSNET V persistent objects. Finally, the program

would have to tie NPSNET V object input and output to NPSNET

operations, guaranteeing system integrity along the way.
Implementation of the NPSNET V design will require
insightful planning and thoughtful programming in order to

achieve an operational NPSNET object database management

system. The effort will be validated by the increased real-

time scene management capabilities of an enhanced NPSNET

distributed network.

51

52

V. CONCLUSION

This work proposes NPSNET V as a vehicle database model
for NPSNET, a real-time vehicle and battle simulator. It
considers the progression of NPSNET toward object-oriented
modeling and real-time scene management over a distributed
network, citing the need for a database with increased
storage and retrieval capabilities. It reviews traditional
and available data models, and documents the selection and
design of the NPSNET V object data model. 1In conclusion,
this work discusses the viability of NPSNET_V as a data
mechanism for use with NPSNET, highlighting recommendations
for future work.

A. RESULTS

NPSNET V is a viable object data model for use in
upgrading the data management facility of the NPSNET vehicle
combat simulator. It presents a probable approach to the
problem of current NPSNET data storage and retrieval
mechanisms which are slow, cumbersome to maintain and
complex to enhance. As NPSNET proceeds in the direction of
object-oriented modeling and real-time scene management over
a multiple workstation network, its data management system
must also progress.

NPSNET_V provides a design for an updated database
facility to support the demands involved in NPSNET vehicle

combat simulation. It adapts the relational data model to

53

represent NPSNET objects, combining its strengths with the
functional capabilities of object-oriented design.

NPSNET_V can define related persistent classes and their
behavior within NPSNET to handle the data management
requirements associated with dynamic terrain, ballistic
motion, intelligent autonomous agents, and three-dimensional
representation. It can anticipate the needs of future
projects which will require speed and accuracy in
documenting world state events, with built-in concurrency

control to manage user interface across a distributed

network.

The proposed NPSNET V design is a reasonable place from
which to proceed with implementation of an updated NPSNET
Vehicle Database. The following section recommends areas

for future research and development.

B. RECOMMENDATIONS
This work identifies, develops and explores the design

of a data model to enhance the existing NPSNET data

management system. It also recommends areas for future

consideration and implementation. 1
In particular, Chapter IV highlights the need for a

clear and comprehensive definition of the physical

properties of all data members within the proposed NPSNET

database, as well as the need for full data representation

of all NPSNET object classes.

54

This works also outlines the selection of database
management system software, and implementation of such a
system, as projects for future NPSNET research and
development. Specifically, it recommends exploring NPSNET V
as a PARODY database, directly capitalizing on the design
groundwork laid in Chapter IV.

Future design considerations should accommodate ongoing
NPSNET simulator development. Data models continue to
evolve to meet the needs of evolving programming languages,

and NPSNET should capitalize on the merits of both.

55

56

APPENDIX

Obstacle Class Hierarchy

meap»-Hvnwo

*%

ITY *
~AREAL RATER
VEGETATION *
NCE
BARRIER TREELINE
WALL
BREAKWATER
-LINEAR DOCK BRIDGE
PIER
WHARF
WAY *
RANSPORT OADWAY *
RUNWAY *
WATERWAY *
RADIO_ANT
ANTENNA<SAT_DISH
TOWER_ANT (see
STOR_TANK)
APARTMENT
BUILDING COMMERCIAL
HOUSE
'WAREHOUSE
POIN BUOY

ED_AIR *x
FD(ED_VEH<I€.(I;{ED_LAND *x
FIXED_SEA *x
BILLBOARD
SIGN LAMPPOST
STREET_SIGN
TRAFFIC_LT

FLOAT OILRIG
TOR_TANK: PETRO_TANK
WAT_TOWER

Possible case of multiple inheritance; see TERRAIN class.
Possible case of multiple inheritance; see VEHICLE class.

57

mOzZ»zZ29%0

~BALLISTIC

FCONTROL’D

»STATIC

Ordnance Class Hierarchy

GUN_AIR 12.7MM
\ZOMM

GUN_LAND 203MM
20MM

IN_50

COMBATANT .
GUN GUN_NAVAL< SIN_54

REN_ LCHR—-40MM
GUN_SMAL MACH_GUN —=7.62MM
SINGLE_SHT PISTOL

RIFLE
M101
/105MM<M102
HOWITZER < M108
203MM 110
M224
) 6OMM ————M29
MORTAR \81MM M43
160MM Mi60
AMRAAM
ARPOON
HOENIX
SIDEWINDER
MISSIL
SPARROW
SM_1
STANDARD<— SM 2
TOMAHAWKe—TASM
NTLAM
TRIDENT ——D 5
MK _46
TORPED MK 48
MK_50 MK
- ANTIRAIL === 1
LAND_MINE
ANTITANK=———- CAPTOR
MINE DEEP MK_56
SEA_MINE€———MEDIUM ——— MK_57
MINE_MKS5
SHALLOWeS— QUIKSTRIK
SLMM_MK67

58

Z=-m> A AW

*

Terrain Class Hierarchy

ASPHALT
BRAMBLE
SCRUB BRUSH
GRAVEL
—~BARREN SHIFT IN64 SAND
ICE

L. ELEVATION
RAIN
PRECIPIT SLEET
SNOW
L-ENVIRONMT:
FOG
AZE MIST
SMOG
SMOKE
ASPHALT
-URBAN<CITY RAILWAY
TRANSPORT<ROADWAY
RUNWAY
WATERWAY
ANOPY CITY
— FOREST
CORN
- VEGETATION CROP< GRASS
LETTUCE
SCRUB-<BRAMBLE
BRUSH
BROOK
FLOWING RIVER
WATERWAY
L. WATE
ICE
LAKE
TANDIN OCEAN
POND
PUDDLE
SWAMP

Possible case of multiple inheritance; see OBSTACLE class.

59

(see VEG’N)
(see VEG’N)

¥ K ¥ *

(see URBAN)

(see URBAN)

(see SNOWY)

“orao=-mim<

— LJAND TRACKED<

Vehicle Class Hierarchy

A6 EA_6B
AV 8
E3 F_16C
E6 é EF_IGD
ET F 14 F_16N
F 16 TF_16N
FA 18
S3 Co B
FIX_WING c9 DC 9
C_130F
C_130 < KC_I30R
PROP E2 LC_130R
~AIR ov_10
P 3
H.1
SlNGLE< H_53 HH_60H
ROTARY< H_ 60 SH__60B
SH_60F
TANDEM—— H_46
AMPHIB —— CARGO LARC
M_113 M1

é; MIAl
M1A2
TANK<
M60
JEEP § M60AL
WHEELED<TRAILER M60A3

RUCK
SSN_21
ATTACK SSN<SSN_671
SSN_688
UBMARIN{—BALLISTIC—5SBN SSBN 726
LsE SUBMERS
AMPHIB ——— LARC
CRAFT <
SURFACE HYDROFL
< CV_63
SHIP CV_67
CVN 65
CVN 68
DDG 51
DDG_993
AOR_1

60

GLOSSARY

abstract data type: A user-oriented construct; a user
defined data type that is not built into the programming
language.

abstraction: Defining new data types; designing a class to
define an abstract data type.

aggregate: A collection, as in an aggregate of data
members.

base class: A class from which other classes are derived.
The derived class inherits all of the characteristics of the
base class. See superclass.

child record: A database record that is related to higher,
or parent, records in the database.

class: A user-defined data type consisting of data members
and member functions.

class hierarchy:: A system, or data lattice, of base and
derived classes.

data language: A language used to write transactions which
refer to the data stored in a database that is managed by a
database management system. Also, a language that specifies
the processing, integrity and security requirements in a
database.

data member: A data component of an object-oriented class;
any valid data type.

data model: A database design that enables the user to
specify a database in terms of abstract and concrete
features about types, aggregates, and relationships of data
stored in the database.

database: Stored data; a unification of several otherwise
distinct data files to support a common application.

database management: Storage and retrieval of data in a
database.

database management system: The software that handles all
storage and retrieval of data in a database.

derived class: A class that inherits all of the
characteristics of the base class. See subclass.

61

element: A single piece of data; one item of a data type.
Collections of them form files in a database. See record.

encapsulation: Defining data type representation and
behavior in an encapsulated entity; defining a class by
binding its data members and functions together.
Encapsulation implies that the implementation is transparent
to the user, while the interface is wvisible to the user.

file: A collection of records of a common database format.

hierarchical data model: A database design of parent and
child records that emulates an inverted tree structure, in
which each parent record may have multiple child records,
but each child record may have only one parent record. A
child record may have parent-to-lower-child records
relationship, forming a multiple-level hierarchy.

inheritance: Deriving a new data type from an existing one;
the ability for a subclass to inherit both data attributes
and methods from previously defined objects in a nested or
hierarchical fashion. Also referred to as subclassing.

instance: An object that has state, behavior and identity.
Also, an object that has been described by a class; the
object is called the instance of that class.

network data model: A database design of parent and child
records that emulates a lattice structure in which each
parent record may have multiple child records and each child
record may have multiple parent records. A child record may
have a parent-to-lower-child records relationship, forming a
multiple level network.

object: An instance of a data type, including standard
object-oriented programming language data types as well as
objects of classes.

object data model: A database design of a collection of
persistent objects.

object-oriented: Containing the properties of abstraction,
encapsulation, inheritance and polymorphism; also, defining
abstract data types, instantiating objects, and sending
messages to the object’s methods.

object-oriented database management system: The software
that allows the user to use and maintain the objects in an

object-oriented database.

parent record: a database record that is related to lower,
or child, records in the database.

62

persistence: The ability of an object to succeed its
creator and to subsequently exist in space other than the
space in which it was created. Also, the property of being
written to storage and then retrieved.

pointer: A variable used to hold values that are the
addresses of objects in memory. A pointer references an
object indirectly, and can manage objects allocated during
program execution.

polymorphism: Customizing the behavior of a derived data
type; exhibition by the methods in a class hierarchy of
different behavior for the same message, depending on the
type of the object for which the method is invoked, and
without regard to the class type of the object reference.

primary key: A key data field whose value uniquely
identifies a given record in a database file.

record: A group of related data elements that form to
support one functional aspect of a database’s application.
A collection of records of common format is a file.

relational data model: A database design that represents
data as tables of rows and columns. Any relationships
between tables are formed by common values in common
columns.

relationship: An association that links data records
together.

secondary key: a key data value that indexes a file on
other than its primary key. The value of a secondary key
does not have to be unique. Multiple records can have the
same secondary key value. When a secondary key is the
primary key of another file, the two files have a many-to-
one relationship.

subclass: See derived class.
superclass: See base class.
type: Enumeration of a data member in the database. In
object-oriented design, refers to the type of a program

constant or variable, which can be of a primitive or an
abstract data type.

63

64

REFERENCES

[Bert91l] E. Bertino and L. Martino. "Object-Oriented
Database Management Systems: Concepts and Issues," IEEE
Computer, Apr 1991, pp 33-47.

[Booc91] G. Booch. Object-Oriented Design: With
Applications. Benjamin/Cummings Publlishing Co, Redwood
City, CA, 1991.

[Date8l] C. J. Date. An Introduction to Database Systems.
Addison-Wesley Publishing Co, Reading, MA, 1981.

[dePa91] E. G. de Paula and M. L. Nelson. Clustering,
Concurrency Control, Crash kRecovery, Garbage Collection, and
Security in Object-Oriented Database Management Systems.
Naval Postgraduate School, Monterey, CA, Feb 1991.

[Elma89] R. Elmasri and S. B. Navathe. Fundamentals of
Database Systems. Benjamin/Cummings Publishing Co, Redwood
Ccity, Ca, 1989.

[Higa92] K. Higa, M. Morrison, J. Morrison and O. Sheng.
"An Object-Oriented Methodology for Knowledge Base/Database
Coupling," Communications of the ACM, Vol 36, No 6, Jun
1992, pp 99-101.

[(Hsia91l] D. K. Hsiao. "The Object-Oriented Database
Management: A Tutorial on its Fundamentals," Naval
Postgraduate School, Monterey, CA, Aug 1991.

[Hsia92] D. K. Hsiao. "Federated Databases and Systems:
Part I - A Tutorial on Their Data Sharing," VLDB Journal,
Vol 1, Aug 1992, pp 127-179.

[Osbo91] W. D. Osborne. NPSNET: An Accurate Low-Cost
Technique for Real-Time Display of Transient Events:
Vehicle Collisions, Explosions and Terrain Modifications.
M.S. Thesis, Naval Postgraduate School, Monterey, CA, Sep
1991.

[Stev92] A. Stevens. C++ Database Development. MIS:Press,
New York, NY, 1992.

65

[Zyda92] M. J. Zyda and D. R. Pratt. "NPSNET Digest: A
Look at a 3D Visual Simulator for Virtual World Exploration
and Experimentation," Naval Postgraduate School, Monterey,

CA, Jun 1992.

[2zyd92] M. J. zyda, D. R. Pratt, J. G. Monahan and K. P.
Wilson. "NPSNET: Constructing a 3D Virtual World,"
Proceedings of the 1992 Symposium on Interactive 3D Graphics
(in cooperation with ACM SIGGRAPH), Cambridge, MA, Mar-Apr

1992, pp 147-156.

[Zyda93] M. J. Zyda, D. R. Pratt and K. M. Kelleher. "1992
NPSNET Research Group Overview," Naval Postgraduate School,
Monterey, CA, Mar 1993.

66

INITIAL DISTRIBUTION LIST

1. Defense Technical Information Center
8725 John J. Kingman Road, Suite 0944

Fort Belvoir, Virginia 22060-6218

2. Dudley Knox Library
Naval Postgraduate School
411 Dyer Road

Monterey, California 93943-5101

3. Electronic Systems Center
66 SPTG/SCXI
50 Griffiss Street

Hanscom Air Force Base, MA 01731-1621

4. LCDR Susan C. Borden Davis
Naval War College (CNC&S)

Newport, RI 02841

5. Mr. Lawrence L. Borden
39 Mountain Drive

Pittsfield, MA 01201

67

